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1. Introduction

In this paper we consider an inverse problem for the linear Boltzmann equation

∂tu+ ω · ∇xu+ qu = qKκ[u] in (0, T ) × S × Ω, (1.1)

where T > 0, Ω is a smooth bounded convex domain of R
N , N ≥ 2, S denotes the unit

sphere of R
N , q ∈ L∞(Ω) and Kκ is the integral operator with kernel κ(x, ω′, ω) defined

by

Kκ[u](t, ω, x) =

∫

S

κ(x, ω′, ω)u(t, ω′, x) dω′. (1.2)

In applications, the equation (1.1) describes the dynamics of a monokinetic flow of

particles in a body Ω under the assumption that the interaction between them is neg-

ligible (which allows us to discard nonlinear terms). For instance, in the case of a

low-density flux of neutrons (see [7], [10]), q ≥ 0 is the total extinction coefficient and

the collision kernel κ is given by

κ(x, ω′, ω) = c(x)h(x, ω′ · ω),
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where c corresponds to the within-group scattering probability and h describes the

anisotropy of the scattering process. In this model, q(x)u(t, ω, x) describes the loss

of particles at x in the direction ω at time t due to absorption or scattering and

q(x)Kκ[u](t, ω, x) represents the production of particles at x in the direction ω from

those coming from directions ω′.

Our focus here is the inverse problem of recovery the coefficients in (1.1) via boundary

measurements. More precisely, we are interested to recover q and κ by giving the

incoming flux of particles on the boundary and measuring the outgoing one. Since

these operations are described mathematically by the albedo operator

Aq,κ : L1
(
0, T ;L1(Σ−; dξ)

)
−→ L1

(
0, T ;L1(Σ+; dξ)

)

(the spaces will be precised below), a general mathematical question concerning this

inverse problem is to know if the knowledge of Aq,κ uniquely determines q, κ, i.e., if the

map (q, κ) 7→ Aq,κ is invertible.

Taking into account the applications, we have to precise this question. A first one

is to know if the knowledge of Aq,κ[f ] for all f determines (q, κ) (infinitely many mea-

surements); a second one is to know if the knowledge of Aq,κ[fj ], for j = 1, 2, . . . , k,

determines (q, κ) (finite number of measurements).

There is a wide bibliography devoted to the first problem. We specially mention

the general results obtained by Choulli and Stefanov [4]: they show that q and κ are

uniquely determined by the albedo operator (see also [9]). We also mention the stability

results obtained by Cipolatti, Motta and Roberty (see [5] and the references therein).

There is also a lot of papers concerning the stationary case (see for instance those by

V.G. Romanov [11], [12], P. Stefanov and G. Uhlmann [13], Tamasan [14], J.N. Wang

[15], and also the references therein).

In this work we focus on the second question, concerning the recovery by a finite

number of measurements. This may be interesting from the numerical point of view

(finite element methods, for instance). Assuming that κ(t, ω, ω) = c(x)h(ω′, ω), we

prove that c can be uniquely determined by at most k measurements, provided that c

belongs to a finite k-dimensional vector space of C(Ω). More precisely:

Theorem 1.1: Let Ω ⊂ R
N be a bounded convex domain of class C1, T > diam(Ω)

and X : = span{ρ1, ρ2, . . . , ρk}, where {ρ1, ρ2, . . . , ρk} is a linearly independent subset

of C(Ω). We assume that c ∈ X and κ(x, ω′, ω) = c(x)h(ω′, ω), where h ∈ C(S × S)

satisfies h(ω, ω) 6= 0 for every ω ∈ S. Then, there exist f1, . . . , fk ∈ C0

(
(0, T ) × Σ−

)

and ω̃1, . . . , ω̃k ∈ S that determine κ uniquely.
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The proof of Theorem 1.1 is based on the construction of highly oscillatory solutions

(à la Calderón [1]) introduced in [5] and some arguments already used by the author in

[6]. In fact, we consider solutions of the form

uj(t, ω, x) = χs(ω̃j, ω)φj(x− tω)e
−

∫
t

0
q̃(x−τω)dτ

eiλ(t−x·ω) +Rλ,s(t, ω, x),

where χs converges (as s→ 1) to δω̃j
, the spherical atomic measure concentrated on ω̃j

and Rλ,s vanishes as λ→ ∞. Therefore, by choosing ω̃j and φj conveniently, we obtain

the result.

We organize the paper as follows: in Section 2 we recall the standard functional

framework in which the Cauchy problem for (1.1) is well posed in the sense of the

semigroup theory and the albedo operator is defined; in Section 3, we introduce the

highly oscillatory functions that will be used, in Section 4, to prove Theorem 1.1.

2. Notation and Functional Framework

In this section we introduce the notation and we recall some well known results on the

Transport Operator and the semigroup it generates in the Neutronic Function Spaces

(see [5] and the references therein for the proofs).

Let Ω ⊂ R
N (N ≥ 2) be a convex and bounded domain of class C1 and S the unit

sphere of R
N . We denote by Q: = S × Ω and Σ its boundary, i.e., Σ: = S × ∂Ω. For

p ∈ [1,+∞) we consider the space Lp(Q) with the usual norm

‖u‖Lp(Q): =

(∫

Q

|u(ω, x)|p dx dω

)1/p

,

where dω denotes the surface measure on S associated to the Lebesgue measure in R
N−1.

For each u ∈ Lp(Q) we define A0u by

(A0u)(ω, x): = ω · ∇xu(ω, x) =

N∑

k=1

ωk
∂u

∂xk
(ω, x), ω = (ω1, . . . , ωN )

where the derivatives are taken in the sense of distributions in Ω.

One checks easily that setting Wp: = {u ∈ Lp(Q) ; A0u ∈ Lp(Q)}, the operator(
A0,Wp

)
is a closed densely defined operator and Wp with the graph norm is a Banach

space.
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For every σ ∈ ∂Ω, we denote ν(σ) the unit outward normal at σ ∈ ∂Ω and we consider

the sets (respectively, the incoming and outgoing boundaries)

Σ±: = {(ω, σ) ∈ S × ∂Ω ; ± ω · ν(σ) > 0}.

In order to well define the albedo operator as a trace operator on the outgoing bound-

ary, we consider Lp(Σ±; dξ), where dξ: = |ω · ν(σ)|dσdω, and we introduce the spaces

W̃±
p : =

{
u ∈ Wp ; u|

Σ±
∈ Lp(Σ±; ξ)

}
,

which are Banach spaces if equipped with the norms

‖u‖
W̃±

p
: =

(
‖u‖p

Wp
+

∫

Σ±

|ω · ν(σ)||u(ω, σ)|p dσdω

)1/p

.

The next two lemmas concern the continuity and surjectivity of the trace operators (see

[2], [3] and [5]):

γ± : W̃±
p → Lp(Σ∓; dξ), γ±(u): = u|

Σ∓
. (2.1)

Lemma 2.1: Let 1 ≤ p < +∞. Then there exists C > 0 (depending only on p) such

that ∫

Σ∓

|ω · ν(σ)||u(ω, σ)|p dσdω ≤ C‖u‖p

W̃±
p

, ∀u ∈ W̃±
p . (2.2)

Moreover, if p > 1 and 1/p+ 1/p′ = 1, we have the Gauss identity
∫

Q

divx(uvω) dxdω =

∫

Σ

ω · ν(σ)u(ω, σ)v(ω, σ) dσdω, (2.3)

for all u ∈ W̃±
p and v ∈ W̃±

p′ .

As an immediate consequence of Lemma 2.1, we can introduce the space

W̃p: =
{
f ∈ Wp ;

∫

Σ

|ω · ν(σ)||f(ω, σ)|p dωdσ < +∞
}

an we have that W̃+
p = W̃−

p = W̃p with equivalent norms.

Lemma 2.2: The trace operators γ± are surjective from W̃±
p onto Lp(Σ∓; dξ). More

precisely, for each f ∈ Lp(Σ∓; dξ), there exists h ∈ W̃±
p such that γ±(h) = f and

‖h‖
W̃±

p

≤ C‖f‖Lp(Σ∓,dξ),

where C > 0 is independent of f .

We consider the operator A : D(A) → Lp(Q), defined by (Au)(ω, x): = ω · ∇u(ω, x),

with D(A): = {u ∈ W̃p ; γ−(u) = 0}.
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Theorem 2.3: The operator A is m-accretive in Lp(Q), for p ∈ [1,+∞).

Corollary 2.4: Let f ∈ Lp(Q), p ∈ [1,+∞) and assume that u ∈ D(A) is a solution of

u+ Au = f . If f ≥ 0 a.e. in Q, then u ≥ 0 a.e. in Q. In particular, it follows that

‖u‖L1(Q) ≤ ‖f‖L1(Q).

It follows from Theorem 2.3 and Corollary 2.4 that the operator A generates a positive

semigroup {U0(t)}t≥0 of contractions acting on Lp(Q).

Let q ∈ L∞(Ω) and κ : Ω × S × S → R be a real measurable function satisfying





∫

S

|κ(x, ω′, ω)| dω′ ≤M1 a.e. Ω × S,

∫

S

|κ(x, ω′, ω)| dω ≤M2 a.e. Ω × S.

(2.4)

Associated to these functions, we define the following continous operators:

1) B ∈ L(Lp(Q), Lp(Q)) defined by B[u](ω, x): = q(x)u(ω, x),

2) Kκ[u](ω, x): =
∫

S
κ(x, ω′, ω)u(ω′, x) dω′.

It follows from (2.4) that Kκ ∈ L(Lp(Q), Lp(Q)) ∀p ∈ [1,+∞) and (see [7])

‖Kκ[u]‖Lp(Q) ≤M
1/p′

1 M
1/p
2 ‖u‖Lp(Q) ≤ max{M1,M2}‖u‖Lp(Q). (2.5)

The operator A + B − Kκ : D(A) → Lp(Q) generates a c0-semigroup {U(t)}t≥0 on

Lp(Q) satisfying

‖U(t)‖L ≤ eCt, C: = ‖q−‖∞ +M2. (2.6)

We consider the initial-boundary value problem for the linear Boltzmann equation





∂tu(t, ω, x) + ω · ∇u(t, ω, x) + q(x)u(t, ω, x) = qKκ[u](t, ω, x)

u(0, ω, x) = 0, (ω, x) ∈ S × Ω

u(t, ω, σ) = f(t, ω, σ), (ω, σ) ∈ Σ−, t ∈ (0, T ),

(2.7)

where q ∈ L∞(Ω), Kκ[u] is defined by (1.2) with κ satisfying (2.4).

By the previous results, it follows that, for f ∈ Lp
(
0, T ;Lp(Σ−, dξ)

)
, p ∈ [1,+∞),

there exists a unique solution u ∈ C
(
[0, T ]; W̃p

)
∩ C1

(
[0, T ];Lp(Q)

)
of (2.7). This

solution u allows us to define the albedo operator

Aq,κ : Lp
(
0, T ;Lp(Σ−, dξ)

)
→ Lp

(
0, T ;Lp(Σ+, dξ)

)

Aq,κ[f ](t, ω, σ): = u(t, ω, σ), (ω, σ) ∈ Σ+.
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As a consequence of Lemmas 2.1 and 2.2, Aq,κ is a linear and bounded operator.

We also consider the following backward-boundary value problem, called the adjoint

problem of (2.7):





∂tu
∗(t, ω, x) + ω · ∇u∗(t, ω, x)− q(x)u∗(t, ω, x) = −qK∗

κ[u∗](t, ω, x)

u∗(T, ω, x) = 0, (ω, x) ∈ S × Ω

u∗(t, ω, σ) = f∗(t, ω, σ), (ω, σ) ∈ Σ+, t ∈ (0, T ),

(2.8)

where f∗ ∈ Lp′(
0, T ;Lp′

(Σ+, dξ)
)
, p′ ∈ [1,+∞),

K∗
κ[u∗](t, ω′, x): =

∫

S

κ(x, ω′, ω)u∗(t, ω, x) dω

with the corresponding albedo operator A∗
q,κ

A∗
q,κ : Lp′(

0, T ;Lp′

(Σ+, dξ)
)
→ Lp′(

0, T ;Lp′

(Σ−, dξ)
)

A∗
q,κ[f∗](t, ω, σ): = u∗(t, ω, σ), (ω, σ) ∈ Σ−.

The operators Aq,κ and A∗
q,κ satisfy the following property:

Lemma 2.5: Let f ∈ Lp
(
0, T ; Lp(Σ−; dξ)

)
and f∗ ∈ Lp′(

0, T ; Lp′

(Σ+; dξ)
)
, where

p, p′ ∈ (1,+∞) are such that 1/p+ 1/p′ = 1. Then, we have

∫ T

0

∫

Σ−

(ω · ν(σ))f(t, ω, σ)A∗
q,κ[f

∗](t, ω, σ) dσdωdt =

= −

∫ T

0

∫

Σ+

(ω · ν(σ))f∗(t, ω, σ)Aq,κ[f ](t, ω, σ) dσdωdt.

Proof: It is a direct consequence of Lemma 2.1. Let u(t, ω, x) the solution of (2.7) with

boundary condition f and u∗(t, ω, x) the solution of (2.8) with boundary f∗. We obtain

the result by using (2.3), once the equation in (2.7) is multiplied by u∗ and integrated

over (0, T ) ×Q.

As a direct consequence of Lemma 2.5, we have:

Lemma 2.6: Let T > 0, q1, q2 ∈ L∞(Ω) and κ1, κ2 satisfying (2.4). Assume that u1

is the solution of (2.7) with coefficients q1, κ1 and satisfying the boundary condition

f ∈ Lp
(
0, T ;Lp(Σ−, dξ)

)
, p ∈ (1,+∞) and that u∗2 is the solution of (2.8), with q2, κ2
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and boundary condition f∗ ∈ Lp′(
0, T ;Lp′

(Σ+, dξ)
)
, 1/p+ 1/p′ = 1. Then we have

∫ T

0

∫

Q

(
q2(x) − q1(x)

)
u1(t, ω, x)u

∗
2(t, ω, x) dxdωdt

−

∫ T

0

∫

Q

(
q2(x)Kκ2

[u1](t, ω, x)− q1(x)Kκ1
[u1](t, ω, x)

)
u∗2(t, ω, x) dxdωdt

=

∫ T

0

∫

Σ+

(ω · ν(σ))
[
Aq1,κ1

[f ] −Aq2,κ2
[f ]

]
(t, ω, σ)f∗(t, ω, σ) dσdωdt.

3. Highly Oscillatory Solutions

In this section we prove some technical results related to special solutions of (2.7) and

(2.8) that will be useful in the proof of Theorem 1.1. We denote by q̃ the zero extension

of q in the exterior of Ω.

Proposition 3.1: Let T > 0, q1, q2 ∈ L∞(Ω), and κ satisfying (2.4). We consider

ψ1, ψ2 ∈ C
(
S, C∞

0 (RN )
)

such that

suppψ1(ω, ·) ∩ Ω = (suppψ2(ω, ·) + Tω) ∩ Ω = ∅, ∀ω ∈ S. (3.1)

Then, there exists C0 > 0 such that, for each λ > 0, there exist R1,λ ∈ C
(
[0, T ]; W̃2

)

and R∗
2,λ ∈ C

(
[0, T ]; W̃2

)
satisfying

‖R1,λ‖C([0,T ];L2(Q)) ≤ C0, ‖R∗
2,λ‖C([0,T ];L2(Q)) ≤ C0, (3.2)

for which the functions u1, u
∗
2 defined by




u1(t, ω, x): = ψ1(ω, x− tω)e

−
∫

t

0
q̃1(x−sω) ds

eiλ(t−ω·x) +R1,λ(t, ω, x)

u∗2(t, ω, x): = ψ2(ω, x− tω)e

∫
t

0
q̃2(x−sω) ds

e−iλ(t−ω·x) +R∗
2,λ(t, ω, x)

(3.3)

are solutions of (2.7) with q = q1 and (2.8) with q = q2 respectively. Moreover, if

κ ∈ L∞
(
Ω;L2(S × S)

)
, then we have

lim
λ→+∞

‖R1,λ‖C([0,T ];L2(Q)) = lim
λ→+∞

‖R∗
2,λ‖C([0,T ]L2(Q)) = 0. (3.4)
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Proof: Let u be the function

u(t, ω, x): = ψ1(ω, x− tω)e
−

∫
t

0
q̃1(x−sω) ds

eiλ(t−ω·x) +R(t, ω, x). (3.5)

By direct calculations, we easily verify that

∂tu+ ω · ∇u+ q1u− q1Kκ[u] = ∂tR+ ω · ∇R + q1R− q1Kκ[R] − eiλtq1Z1,λ,

where

Z1,λ(t, ω, x): =

∫

S

κ(x, ω′, ω)ψ1(ω
′, x− tω′)e

−
∫

t

0
q̃1(x−sω′) ds

e−iλω′·xdω′. (3.6)

From (2.6), there exists R1,λ ∈ C1
(
[0, T ];L2(Q)

)
∩C

(
[0, T ];D(A)

)
a unique solution of





∂tR + ω · ∇R+ q1R = q1Kκ[R] + eiλtq1Z1,λ,

R(0, ω, x) = 0, (ω, x) ∈ S × Ω,

R(t, ω, σ) = 0, (ω, σ) ∈ Σ−,

(3.7)

and it follows from (3.1) that the function u defined by (3.5) satisfies (2.7) with boundary

condition

fλ(t, ω, σ): = ψ1(ω, σ − tω)e
−

∫
t

0
q̃1(σ−sω) ds

eiλ(t−ω·σ), (ω, σ) ∈ Σ−.

Multiplying both sides of the equation in (3.7) by the complex conjugate of R, inte-

grating it over Q and taking its real part, we get, from Lemma 2.1,

1

2

d

dt

∫

Q

|R(t)|2dωdx+
1

2

∫

Σ+

ω · ν(σ)|R(t)|2dωdσ +

∫

Q

q1|R(t)|2dωdx−

ℜ

∫

Q

q1Kκ[R](t)R(t)dωdx = ℜ

[
eiλt

∫

Q

q1Z1,λ(t)R(t)dωdx

]
.

It follows from the Cauchy-Schwarz inequality and (2.5) that

∫

Q

|Kκ[R(t)]||R(t)| dxdω ≤ C1‖R(t)‖2
L2(Q),

where C1: = max{M1,M2}. Therefore, we obtain

d

dt
‖R(t)‖2

L2(Q) ≤ C2‖q1‖∞‖R(t)‖2
L2(Q) + ‖q1‖∞‖Z1,λ(t)‖2

L2(Q),
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where C2: = 3+2C1. Since R(0) = 0, we get, by integrating this last inequality on [0, t],

‖R(t)‖2
L2(Q) ≤ ‖q1‖∞e‖q1‖∞TC2

∫ t

0

‖Z1,λ(τ)‖2
L2(Q) dτ

≤ ‖q1‖∞e‖q1‖∞TC2‖Z1,λ‖
2
L2((0,T )×Q)

, ∀t ∈ [0, T ]. (3.8)

The first inequality in (3.2) follows easily because |Z1,λ(t, ω, x)| ≤ ‖ψ1‖∞e‖q1‖∞TM1

and, as the same arguments hold for u∗2 and R∗
2,λ, we also obtain the second inequality.

We assume now κ ∈ L∞
(
Ω;L2(S×S)

)
. For each x ∈ R

N , the map ω′ 7→ exp(iλω′ ·x)

converges weakly to zero in L2(S) when λ→ +∞ and the integral operator with kernel

κ(x, ·, ·) is compact in L2(S). So, we obtain from (3.6),

lim
λ→+∞

‖Z1,λ(t, ·, x)‖L2(S) = 0 a.e. in [0, T ]× Ω.

Moreover, ‖Z1,λ(t, ·, x)‖L2(S) ≤ C, where C > 0 is a constant that does not depend on

λ. The Lebesgue’s Dominated Convergence Theorem implies that

lim
λ→+∞

‖Z1,λ‖L2([0,T ]×Q) = 0. (3.9)

From (3.9) and (3.8) we obtain (3.4), and our proof is complete.

Corollary 3.2: Under the hypothesis of Proposition 3.1, if q1, q2 ∈ C(Ω) and κ ∈

L∞
(
Ω;C(S × S)

)
, we have, for every ω ∈ S,

lim
λ→+∞

‖R1,λ(·, ω, ·)‖C([0,T ];L2(Ω)) = lim
λ→+∞

‖R∗
2,λ(·, ω, ·)‖C([0,T ];L2(Ω)) = 0.

Proof: By multiplying both sides of the equation in (3.7) by the complex conjugate of

R(t, ω, x), integrating it over Ω, taking its real part and applying the Hölder inequality,

we get

d

dt
‖R(t, ω)‖2

L2(Ω) ≤ 4‖q1‖∞‖R(t, ω)‖2
L2(Ω)

+ ‖q1‖∞
(
‖Kκ[R](t, ω)‖2

L2(Ω) + ‖Z1,λ(t, ω)‖2
L2(Ω)

)
.

(3.10)

Since

|Kκ[R](t, ω, x)| ≤

∫

S

|κ(x, ω′, ω)||R(t, ω′, x)| dω′

≤

(∫

S

|κ(x, ω′, ω)| dω′

)1/2 (∫

S

|κ(x, ω′, ω)||R(t, ω′, x)|2 dω′

)1/2

≤M
1/2
1 ‖κ‖1/2

∞

(∫

S

|R(t, ω′, x)|2 dω′

)1/2

,
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we obtain

‖Kκ[R](t, ω)‖2
L2(Ω) ≤M1‖κ‖∞‖R(t)‖2

L2(Q). (3.11)

From (3.8), (3.10) and (3.11) we have

d

dt
‖R(t, ω)‖2

L2(Ω) ≤ 4‖q1‖∞‖R(t, ω)‖2
L2(Ω)

+ C
(
‖Z1,λ‖

2
L2((0,T )×Q) + ‖Z1,λ(t, ω)‖2

L2(Ω)

)
.

Now, integrating this last inequality on time, we get

‖R(t, ω)‖2
L2(Ω) ≤ Ce‖q1‖∞T

(
t‖Z1,λ‖

2
L2((0,T )×Q) +

∫ t

0

‖Z1,λ(τ, ω)‖2
L2(Ω) dτ

)

≤ Ce‖q1‖∞T
(
T‖Z1,λ‖

2
L2((0,T )×Q) + ‖Z1,λ(·, ω, ·)‖2

L2((0,T )×Ω)

)
.

From Proposition 3.1 we know that ‖Z1,λ‖L2((0,T )×Q) → 0 as λ→ +∞. On the other

hand, as the map ω′ 7→ eiω′·x converges weakly to zero in L2(S), we have from (3.6), for

almost x ∈ Ω,

lim
λ→∞

Z1,λ(t, ω, x) = 0, ∀ω ∈ S, ∀t ∈ [0, T ]

and the conclusion follows from the Lebesgue’s Theorem.

Lemma 3.3: We assume that q ∈ L∞(Ω) and κ satisfies (2.4). Let S∗
λ be the solution

of 



∂tS + ω · ∇S − qS = −qK∗
κ[S] + qe−iλtZ,

S(T, ω, x) = 0, (ω, x) ∈ S × Ω,

S(t, ω, σ) = 0, (ω, σ) ∈ Σ+,

(3.12)

where Z ∈ H1
(
0, T ;L2(Q)

)
such that Z(T ) = 0. Then we have

‖S∗
λ‖C([0,T ];L2(Q)) ≤ C0 and lim

λ→∞
‖S∗

λ‖H−1(0,T ;L2(Q)) = 0, (3.13)

where C0 is a constant independent of λ.

Proof: Multiplying both sides of the equation in (3.12) by the complex conjugate of

S∗
λ, integrating it over Q and taking its real part, we get

1

2

d

dt
‖S∗

λ(t)‖2
L2(Q) +

1

2

∫

Σ−

(ω · ν(σ))|S∗
λ(t, ω, σ)| dωdσ ≥ − ‖q‖∞‖S∗

λ(t)‖2
L2(Q)

− ‖q‖∞‖K∗
κ[S](t)‖L2(Q)‖S

∗
λ(t)‖L2(Q) − ‖q‖∞‖Z(t)‖L2(Q)‖S

∗
λ(t)‖L2(Q)
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Since ‖K∗
κ[S](t)‖L2(Q) ≤ max{M1,M2}‖S

∗
λ(t)‖L2(Q), we have

d

dt
‖S∗

λ(t)‖2
L2(Q) ≥ −C2‖S

∗
λ(t)‖2

L2(Q) − ‖q‖∞‖Z(t)‖2
L2(Q),

where C2: = (3 + 2 max{M1,M2})‖q‖∞. Integrating this last inequality on [t, T ] and

taking into account that S∗
λ(T ) = 0, we obtain

‖S∗
λ(t)‖2

L2(Q) ≤ ‖q‖∞eC2T

∫ T

t

‖Z(τ)‖2
L2(Q) dτ ≤ ‖q‖∞eC2T ‖Z‖L2(0,T ;L2(Q)) (3.14)

and the inequality in (3.13) follows easily.

We consider now

wλ(t, ω, x): =

∫ T

t

S∗
λ(τ, ω, x) dτ, h(t, ω, x): =

∫ T

t

e−iλτZ(τ, ω, x) dτ. (3.15)

Then, it is easy to check that wλ satisfies




∂tw + ω · ∇w − q2w = −qK∗
κ[w] + qh,

w(T, ω, x) = 0, (ω, x) ∈ S × Ω,

w(t, ω, σ) = 0, (ω, σ) ∈ Σ+,

(3.16)

Multiplying both sides of the equation in (3.16) by the complex conjugate of wλ,

integrating it over Q, taking its real part and applying the Cauchy-Schwarz inequality,

we get as before,

‖wλ(t)‖2
L2(Q) ≤ ‖q‖∞eC2T‖h‖2

L2(0,T ;L2(Q)) ≤ ‖q‖∞T
2eC2T ‖Z‖2

L2(0,T ;L2(Q)). (3.17)

As S∗
λ = −∂twλ, it follows from (3.14) and (3.17) that the set {wλ} is bounded in

C1
(
[0, T ];L2(Q)

)
and, in particular, is relatively compact in C

(
[0, T ];L2(Q)

)
.

On the other hand, by integrating by parts the second integral in (3.15), it is easy to

check that there exists C > 0 (depending only on T ) such that

‖h‖L2(0,T :L2(Q)) ≤
C

|λ|
‖Z‖H1(0,T ;L2(Q)). (3.18)

Hence, by (3.17), it follows that ‖wλ‖C([0,T ];L2(Q)) → 0 as λ → ∞. Since the partial

derivative in t, ∂t : C
(
[0, T ];L2(Q)

)
→ H−1

(
0, T ;L2(Q)

)
, is a continuous operator,

there exists a constant C3 > 0 such that

‖S∗
λ‖H−1(0,T ;L2(Q)) = ‖∂twλ‖H−1(0,T ;L2(Q)) ≤ C2‖wλ‖C(0,T ;L2(Q))

and we have the conclusion.
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4. Recovery by a Finite Number of Boundary Measurements

In this section we assume that {ρ1, ρ2, . . . , ρk} is a given linearly independent set of

functions of C(Ω) and we denote X : = span{ρ1, ρ2, . . . , ρk}. For each ω̃ ∈ S we consider

Pω̃[ρi] the X-ray transform of ρi in the direction ω̃, i.e.,

Pω̃[ρi](x): =

∫ ∞

−∞

ρi(x+ tω̃) dt

and, for each ε > 0, Ωε: =
{
x ∈ R

N \ Ω ; dist(x,Ω) < ε
}
.

The following Lemma, which the proof is given in [6], will be essential for the proof

of Theorem 1.1:

Lemma 4.1: For all ε > 0, there exist ω̃j ∈ S and φj ∈ C∞
0 (Ωε), j = 1, . . . , k, such

that the matrix A = (aij), with entries defined by

aij : =

∫

RN

Pω̃j
[ρi](x)φ

2
j(x) dx, (4.1)

is invertible.

In order to prove Theorem 1.1, we define, for 0 < r < 1, the function χr : S × S → R

as χr(ω̃, ω): = P (rω̃, ω), where P is the Poisson kernel for B1(0), i.e.,

P (x, y): =
1 − |x|2

αN |x− y|N
.

From the well known properties of P (see [8]), we have

∫

S

χr(ω̃, ω) dω = 1, ∀ r ∈ (0, 1), ∀ω̃ ∈ S,

lim
r→1

∫

S

χr(ω̃, ω)ψ(ω) dω = ψ(ω̃),

(4.2)

where the above limit is taken in the topology of Lp(S), p ∈ [1,+∞) and uniformly on

S if ψ ∈ C(S). We are now in position to prove our main result.

Proof of Theorem 1.1: Let ε: = (T − diam(Ω))/2. We assume that q1 = q2 = q

and κi(x, ω
′, ω) = ci(x)h(ω

′, ω), where c1, c2 ∈ X . For ω̃ ∈ S, we define ψ1(ω, x) =

χs(ω̃, ω)φ(x) and ψ2(ω, x) = χr(ω̃, ω)φ(x), where 0 < r, s < 1 and φ ∈ C∞
0 (Ωε). Then
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ψ1 and ψ2 satisfy the condition (3.1) and we may consider the solutions u1 and u∗2
defined by (3.3), i.e.,

u1(t, ω, x): = χs(ω̃, ω)φ(x− tω)e
−

∫
t

0
q̃(x−τω)dτ

eiλ(t−x·ω) +R1,λ,s(t, ω, x),

u∗2(t, ω, x): = χr(ω̃, ω)φ(x− tω)e

∫
t

0
q̃(x−τω)dτ

e−iλ(t−x·ω) +R∗
2,λ,r(t, ω, x),

where λ > 0 will be chosen a posteriori. We shall write

Φλ(t, ω, x): = φ(x− tω)e
−

∫
t

0
q̃(x−τω)dτ

eiλ(t−x·ω)

Ψλ(t, ω, x): = φ(x− tω)e

∫
t

0
q̃(x−τω)dτ

e−iλ(t−x·ω)

in such a way that

u1(t, ω, x) = χs(ω̃, ω)Φλ(t, ω, x) +R1,λ,s(t, ω, x),

u∗2(t, ω, x) = χr(ω̃, ω)Ψλ(t, ω, x) +R∗
2,λ,r(t, ω, x).

(4.3)

Substituting u1 and u∗2 in the indentity given in Lemma 2.6, we have

J(λ, r, s) = L(λ, r, s), (4.4)

where

J(λ, r, s): =

∫ T

0

∫

Q

q(x)
(
c1(x) − c2(x)

)
Kh[u1](t, ω, x)u

∗
2(t, ω, x) dxdωdt,

L(λ, r, s): =

∫ T

0

∫

Σ+

(ω · ν(σ))
(
A1[fλ,s] −A2[fλ,s]

)
f∗

λ,r dσdωdt.

In the above formulas, we are denoting Ai = Aci
, i = 1, 2 and

fλ,s(t, ω, σ): = χs(ω̃, ω)Φλ(t, ω, σ), (ω, σ) ∈ Σ−,

f∗
λ,r(t, ω, σ): = χr(ω̃, ω)Ψλ(t, ω, σ), (ω, σ) ∈ Σ+.

(4.5)

In particular, it follows from the definition of the Albedo Operator and (4.3),

A1[fλ,s] −A2[fλ,s] = R1,λ,s −R2,λ,s, on (0, T ) × Σ+. (4.6)
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By denoting η(x) = q̃(x)
(
c̃1(x)− c̃2(x)

)
and by considering the special form of u1 and

u∗2, we may write J(λ, r, s) as J = J1 + J2 + J3 + J4, where

J1(λ, r, s): =

∫ T

0

∫

Q

η(x)

[∫

S

h(ω′, ω)χs(ω̃, ω
′)Φλ(t, ω′, x)dω′

]
×

× χr(ω̃, ω)Ψλ(t, ω, x) dxdωdt,

J2(λ, r, s): =

∫ T

0

∫

Q

η(x)

[∫

S

h(ω′, ω)χs(ω̃, ω
′)Φλ(t, ω′, x)dω′

]
R∗

2,λ,r(t, ω, x) dxdωdt,

J3(λ, r, s): =

∫ T

0

∫

Q

η(x)

[∫

S

h(ω′, ω)R1,λ,s(t, ω
′, x)dω′

]
χr(ω̃, ω)Ψλ(t, ω, x) dxdωdt,

J4(λ, r, s): =

∫ T

0

∫

Q

η(x)

[∫

S

h(ω′, ω)R1,λ,s(t, ω
′, x)dω′

]
R∗

2,λ,r(t, ω, x) dxdωdt.

Taking the limit as r → 1− in the above expressions, we get from the definition of

χr, Ji(λ, r, s) → Ji(λ, s), where

J1(λ, s): =

∫ T

0

∫

Ω

η(x)

[∫

S

h(ω′, ω̃)χs(ω̃, ω
′)Φλ(t, ω′, x)dω′

]
Ψλ(t, ω̃, x) dxdt,

J2(λ, s): =

∫ T

0

∫

Q

η(x)

[∫

S

h(ω′, ω)χs(ω̃, ω
′)Φλ(t, ω′, x)dω′

]
S∗

2,λ(t, ω, x) dxdωdt,

J3(λ, s): =

∫ T

0

∫

Ω

η(x)

[∫

S

h(ω′, ω̃)R1,λ,s(t, ω
′, x)dω′

]
Ψλ(t, ω̃, x) dxdt,

J4(λ, s): =

∫ T

0

∫

Q

η(x)

[∫

S

h(ω′, ω)R1,λ,s(t, ω
′, x)dω′

]
S∗

2,λ(t, ω, x) dxdωdt

and S∗
2,λ is the unique solution of





∂tS + ω · ∇S − qS = −qK∗
κ2

[S] + e−iλtqZ∗
2,λ,

S(T, ω, x) = 0, (ω, x) ∈ S × Ω,

S(T, ω, σ) = 0, (ω, σ) ∈ Σ+,

(4.7)

Moreover, from (4.5) and (4.2), it follows that L(λ, r, s) → L(λ, s), where

L(λ, s): =

∫ T

0

∫

∂Ω

(ω̃ · ν(σ))+
(
Ã1[fλ,s] − Ã2[fλ,s]

)
(t, ω̃, σ)Ψλ(t, ω̃, σ) dσdt

=

∫ T

0

∫

∂Ω

(ω̃ · ν(σ))+
(
R1,λ,s(t, ω̃, σ) −R2,λ,s(t, ω̃, σ)

)
Ψλ(t, ω̃, σ) dσdt,

(4.8)
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where Ãi[fλ,s] denotes the zero extension of Ai[fλ,s] on ∂Ω. Therefore, by taking the

limit as r → 1− in (4.4), we have

J1(λ, s) + J2(λ, s) + J3(λ, s) + J4(λ, s) = L(λ, s).

Now, it is time to take the limit as s→ 1−. For the first two terms of the right hand

side of the above identity, we get (for i = 1, 2) Ji(λ, s) → Ji(λ), where

J1(λ): =

∫ T

0

∫

Ω

η(x)h(ω̃, ω̃)Φλ(t, ω̃, x)Ψλ(t, ω̃, x) dxdt

= h(ω̃, ω̃)

∫ T

0

∫

Ω

η(x)φ(x− tω̃)2dxdt,

J2(λ): =

∫ T

0

∫

Q

η(x)h(ω̃, ω)Φλ(t, ω̃, x)S∗
2,λ(t, ω, x) dxdωdt.

(4.9)

On the other hand, the dependence on s in the other terms is given by R1,λ,s and

R2,λ,s, which are the solution of (j = 1, 2)





∂tR + ω · ∇R+ qR = qKκj
[R] + eiλtqZj,λ,s,

R(0, ω, x) = 0, (ω, x) ∈ S × Ω,

R(t, ω, σ) = 0, (ω, σ) ∈ Σ+,

(4.10)

where

Zj,λ,s(t, ω, x): =

∫

S

κj(x, ω
′, ω)χs(ω̃, ω

′)Φλ(t, ω′, x)dω′. (4.11)

It is an immediate consequence of (4.2) and the Lebesgue’s Theorem that, as s → 1,

Zj,λ,s → Zj,λ in C
(
[0, T ];L2(Q)

)
, where

Zj,λ(t, ω, x): = κj(x, ω̃, ω)Φλ(t, ω̃, x). (4.12)

Hence,

lim
s→1−

Rj,λ,s = Sj,λ in C
(
[0, T ];L2(Q)

)
,

where Sj,λ is the solution of





∂tS + ω · ∇S + qS = qKκj
[S] + eiλtqZj,λ,

S(0, ω, x) = 0, (ω, x) ∈ S × Ω,

S(t, ω, σ) = 0, (ω, σ) ∈ Σ−,

(4.13)
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and Zj,λ(t, ω, x): = cj(x)h(ω̃, ω)Φλ(t, ω̃, x). Therefore, Ji(λ, s) → Ji(λ), (i = 3, 4) and

L(λ, s) → L(λ), where

J3(λ): =

∫ T

0

∫

Ω

η(x)

[∫

S

h(ω′, ω̃)S1,λ(t, ω′, x)dω′

]
Ψλ(t, ω̃, x) dxdt,

J4(λ): =

∫ T

0

∫

Q

η(x)

[∫

S

h(ω′, ω̃)S1,λ(t, ω′, x)dω′

]
S∗

2,λ(t, ω, x) dxdωdt.

L(λ): =

∫ T

0

∫

∂Ω

(
ω̃ · ν(σ)

)+(
S1,λ(t, ω̃, σ) − S2,λ(t, ω̃, σ)

)
Ψλ(t, ω̃, σ) dσdt

(4.14)

and we obtain

|J1(λ)| ≤ |J2(λ)| + |J3(λ)| + |J4(λ)| + |L(λ)|, (4.15)

where

|J2(λ)| ≤ ‖η‖∞‖h‖∞eMT

∫ T

0

∫

Q

|φ(x− tω̃)S∗
2,λ(t, ω, x)| dxdωdt,

|J3(λ)| ≤ ‖η‖∞‖φ‖∞eMT ‖Kh[S1,λ]‖L2(0,T ;L2(Q)),

|J4(λ)| ≤ ‖η‖∞‖Kh[S1,λ]‖L2(0,T ;L2(Q))‖S
∗
2,λ‖L2(0,T ;L2(Q)),

|L(λ)| ≤ ‖φ‖∞eMT

∫ T

0

∫

∂Ω

(
ω̃ · ν(σ)

)+
|S1,λ(t, ω̃, σ)− S2,λ(t, ω̃, σ)| dσdt.

(4.16)

Since φ ∈ C∞
0 (Ωε), it follows from the choice of ε that the function (t, ω, x) 7→ φ(x−tω̃)

belongs to H1
0 (0, T ;L2(Q)) (as a constant function on ω). Hence, we have

|J2(λ)| ≤ ‖ρ‖∞eMT ‖φ‖H1
0
(0,T ;L2(Q))‖S

∗
2,λ‖H−1(0,T ;L2(Q)).

On the other hand, from the weak convergence to zero in L2
(
0, T ;L2(Q)

)
of S1,λ, it

follows that

lim
λ→+∞

‖Kh[S1,λ]‖L2(0,T ;L2(Q)) = 0. (4.17)

Hence, we have from (4.15)–(4.17) and Lemma 3.3,

|J1(λ)| = |h(ω̃, ω̃)|

∣∣∣∣∣

∫ T

0

∫

Ω

η(x)φ(x− tω̃)2 dxdt

∣∣∣∣∣

≤ C(λ)‖η‖∞ + C2

∫ T

0

∫

∂Ω

(
ω̃ · ν(σ)

)+
|S1,λ(t, ω̃, σ) − S2,λ(t, ω̃, σ)| dσdt,

(4.18)

where C(λ) → 0 as λ→ +∞.
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Since (suppφ+ sω̃) ∩ Ω = ∅ for all |s| ≥ T , we have

∣∣∣∣∣

∫ T

0

∫

Ω

η(x)φ(x− tω̃)2 dxdt

∣∣∣∣∣ =

∣∣∣∣∣

∫

RN

∫ T

0

η(y + sω̃)φ(y)2 dsdy

∣∣∣∣∣

=

∣∣∣∣
∫

RN

∫ ∞

−∞

ρ(y + sω̃)φ(y)2 dsdy

∣∣∣∣

≥

∫

RN

|Pω̃[η](y)|φ(y)2 dy

(4.19)

and we get

|h(ω̃, ω̃)|

∫

RN

|Pω̃[η](y)|φ(y)2 dy ≤ C(λ)‖η‖∞ +

C2

∫ T

0

∫

∂Ω

(
ω̃ · ν(σ)

)+
|S1,λ(t, ω̃, σ) − S2,λ(t, ω̃, σ)| dσdt

We are now in position to conclude the proof. First of all, we consider in the above

inequality the directions ω̃1, . . . , ω̃k and the functions φ1, . . . , φk given by Lemma 4.1,

in such a way that we can write

C0‖c1 − c2‖∞ ≤ C(λ)‖c1 − c2‖∞ +

+ C2

k∑

j=1

∫ T

0

∫

∂Ω

(
ω̃j · ν(σ)

)+
|S1,λ(t, ω̃j, σ)− S2,λ(t, ω̃j, σ)| dσdt,

for some constant C0 > 0. If we denote by

ui,j(t, ω, σ) = χs(ω̃j , ω)Φλ(t, ω, x) +Ri,λ,s(t, ω, x), i = 1, 2, j = 1, . . . , k

it follows from (4.2) that, as s→ 1−, ui,j → u#
i,j, where

u#
i,j = δω̃j

Φλ + Si,λ, i = 1, 2, j = 1, . . . , k

and δω̃j
is the spherical atomic measure concentrated on ω̃j .

It is clear from (4.13) that u#
1,j(t, ω, σ) = u#

2,j(t, ω, σ), for σ ∈ Σ−
ω and j = 1, . . . , k.

Moreover, u#
1,j − u#

2,j = S1,λ − S2,λ. Therefore, if u#
1,j(t, ω̃j, σ) = u#

2,j(t, ω̃j, σ) on Σ+
ω̃j

,

for j = 1, . . . , k, it follows that

C0‖c1 − c2‖∞ ≤ C(λ)‖c1 − c2‖∞

and the conclusion follows easily if we choose λ > 0 large enough.
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