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1. Introduction

In this paper we consider an inverse problem for the linear Boltzmann equation
Ou+ w - Veu+ qu=qKg[u] in (0,7) xS x Q, (1.1)

where T > 0,  is a smooth bounded convex domain of R, N > 2. S denotes the unit
sphere of RY, ¢ € L°°(Q2) and K, is the integral operator with kernel x(z,w’, w) defined
by
Kilu](t,w,z) = //{(m,w',w)u(t,w',m) dw'. (1.2)
s
In applications, the equation (1.1) describes the dynamics of a monokinetic flow of
particles in a body €2 under the assumption that the interaction between them is neg-
ligible (which allows us to discard nonlinear terms). For instance, in the case of a
low-density flux of neutrons (see [7], [10]), ¢ > 0 is the total extinction coefficient and
the collision kernel x is given by

k(z,w' w) = c(x)h(z, - w),



where ¢ corresponds to the within-group scattering probability and h describes the
anisotropy of the scattering process. In this model, ¢(z)u(t,w,x) describes the loss
of particles at x in the direction w at time t due to absorption or scattering and
q(x)K[u](t,w, z) represents the production of particles at z in the direction w from
those coming from directions w’.

Our focus here is the inverse problem of recovery the coefficients in (1.1) via boundary
measurements. More precisely, we are interested to recover ¢ and w by giving the
incoming flux of particles on the boundary and measuring the outgoing one. Since
these operations are described mathematically by the albedo operator

Ag: L0, T; LY (S7;d€)) — LY(0,T; LY (S5 d€))

(the spaces will be precised below), a general mathematical question concerning this
inverse problem is to know if the knowledge of A, .. uniquely determines g, s, i.e., if the
map (q, k) — A, is invertible.

Taking into account the applications, we have to precise this question. A first one
is to know if the knowledge of A, .[f] for all f determines (¢, ) (infinitely many mea-
surements); a second one is to know if the knowledge of A, .[f;], for j = 1,2,...,k,
determines (g, k) (finite number of measurements).

There is a wide bibliography devoted to the first problem. We specially mention
the general results obtained by Choulli and Stefanov [4]: they show that ¢ and x are
uniquely determined by the albedo operator (see also [9]). We also mention the stability
results obtained by Cipolatti, Motta and Roberty (see [5] and the references therein).

There is also a lot of papers concerning the stationary case (see for instance those by
V.G. Romanov [11], [12], P. Stefanov and G. Uhlmann [13], Tamasan [14], J.N. Wang
[15], and also the references therein).

In this work we focus on the second question, concerning the recovery by a finite
number of measurements. This may be interesting from the numerical point of view
(finite element methods, for instance). Assuming that x(t,w,w) = c(z)h(w',w), we
prove that ¢ can be uniquely determined by at most k measurements, provided that c

belongs to a finite k-dimensional vector space of C'(§2). More precisely:

Theorem 1.1: Let Q C RY be a bounded convex domain of class C*, T > diam(2)
and X:= span{p1, p2,...,pr}, where {p1,p2,...,pr} is a linearly independent subset
of C(Q). We assume that ¢ € X and k(z,w’,w) = c(x)h(w’,w), where h € C(S x S)
satisfies h(w,w) # 0 for every w € S. Then, there exist fi,..., fr € CO((O,T) X E‘)

and Wy, ...,w, €S that determine k uniquely.
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The proof of Theorem 1.1 is based on the construction of highly oscillatory solutions
(a la Calderén [1]) introduced in [5] and some arguments already used by the author in
[6]. In fact, we consider solutions of the form

(8,0, 2) = X (@) (@ — tw)e™ Jo ETIT R L R (10, 2),

where y, converges (as s — 1) to dz,, the spherical atomic measure concentrated on w;
and R) s vanishes as A — oo. Therefore, by choosing w; and ¢; conveniently, we obtain
the result.

We organize the paper as follows: in Section 2 we recall the standard functional
framework in which the Cauchy problem for (1.1) is well posed in the sense of the
semigroup theory and the albedo operator is defined; in Section 3, we introduce the
highly oscillatory functions that will be used, in Section 4, to prove Theorem 1.1.

2. Notation and Functional Framework

In this section we introduce the notation and we recall some well known results on the
Transport Operator and the semigroup it generates in the Neutronic Function Spaces
(see [5] and the references therein for the proofs).

Let Q C RY (N > 2) be a convex and bounded domain of class C* and S the unit
sphere of RY. We denote by Q:= S x Q and ¥ its boundary, i.e., ¥:= S x 09Q. For
p € [1,400) we consider the space LP(Q)) with the usual norm

1/p
ull r(Qy: = (/Q lu(w, z)[P dmdw) ,

where dw denotes the surface measure on S associated to the Lebesgue measure in RV =1,

For each u € LP(Q) we define Agu by

N
ou
(AUU)(W,ZE)Z =w:- vxu<w7$> = ;Wka—wk<w7$>v W = (wlv s 7WN>

where the derivatives are taken in the sense of distributions in 2.

One checks easily that setting W,:= {u € LP(Q); Aou € LP(Q)}, the operator
(AO, Wp) is a closed densely defined operator and W, with the graph norm is a Banach
space.



For every o € 0L, we denote v (o) the unit outward normal at o € 92 and we consider
the sets (respectively, the incoming and outgoing boundaries)

Y»E: = {(w,0) €SxIN; +w-v(o) >0}

In order to well define the albedo operator as a trace operator on the outgoing bound-
ary, we consider LP(X%; d¢), where d¢: = |w - v(0)|dodw, and we introduce the spaces

W;ai: = {u EWpiu_, € Lp(2i5§)}’

which are Banach spaces if equipped with the norms

1/p
g = (Rl + [ o vollutesolpdoas)

The next two lemmas concern the continuity and surjectivity of the trace operators (see
[2], 3] and [5]): .
Y Wy — LP(X7F5dE), ye(u):=u .. (2.1)

Lemma 2.1: Let 1 < p < 400. Then there exists C' > 0 (depending only on p) such
that

/ lw - v(o)||u(w, )P dodw < CHuH%i, Vu € VNV;E (2.2)
XF P
Moreover, if p>1 and 1/p+ 1/p’ = 1, we have the Gauss identity
/ div, (vvw) dedw = / w-v(o)u(w,o)v(w, o) dodw, (2.3)
Q by

for all u € Wi and v € W2,

As an immediate consequence of Lemma 2.1, we can introduce the space
17\/;: ={feW,; / w - v(0)||f(w,0)|P dwdo < +oo}
b

an we have that )7\//;' = VNVP_ = )/NVp with equivalent norms.

Lemma 2.2: The trace operators 4+ are surjective from 17\7;[ onto LP(XF;dE). More
precisely, for each f € LP(XT;dE), there exists h € W;E such that v (h) = f and
1Al < CllfllLe s g

where C > 0 is independent of f.

We consider the operator A : D(A) — LP(Q), defined by (Au)(w,z):=w - Vu(w, z),
with D(A):={u € W, ; v_(u) = 0}.



Theorem 2.3: The operator A is m-accretive in LP(Q), for p € [1,+00).

Corollary 2.4: Let f € LP(Q), p € [1,+00) and assume that u € D(A) is a solution of
u+Au=f. If f >0 a.e. in Q, then u > 0 a.e. in Q. In particular, it follows that

lullzr@) < Ifllzr@)-

It follows from Theorem 2.3 and Corollary 2.4 that the operator A generates a positive
semigroup {Up(t)}+>0 of contractions acting on LP(Q).

Let ¢ € L*(2) and k: 2 x S x S — R be a real measurable function satisfying

/|/i(:c,w’,w)\ dw' < My ae. Q xS,
S

(2.4)
/|/i(:c,w’,w)\ dw < My ae. Q x S.
s
Associated to these functions, we define the following continous operators:
1) B e L(I7(Q), I"(Q)) defined by Blu](w, 2): = g(x)u(w, ),
2) K.[ul(w,z):= [sr(z, o, w)u(w, z)dw'
It follows from (2.4) that K,, € L(LP(Q), LP(Q)) Vp € [1,+00) and (see [7])
1/p" 4 41
IKclulllzo) < My My Pllull o) < max{My, Mallull vy (25)

The operator A+ B — K,, : D(A) — LP(Q) generates a cp-semigroup {U(t)}¢>0 on
LP(Q) satisfying
U@l < e, C:=llg |l + M. (2.6)

We consider the initial-boundary value problem for the linear Boltzmann equation
Ou(t,w, x) +w - Vu(t,w, z) + q(z)u(t,w, z) = ¢K[u](t,w, x)
u(0,w,z) =0, (w,x)€SxN (2.7)
u(t,w,o0) = f(t,w,o0), (w,o)eX™, te(0,T),
where g € L>(Q), K, [u] is defined by (1.2) with x satisfying (2.4).

By the previous results, it follows that, for f € LP (O,T; Lp(E_,dE)), p € [1,+00),
there exists a unique solution u € C([0,T];W,) N C*([0,T]; LP(Q)) of (2.7). This
solution u allows us to define the albedo operator

Agr s LP(0,T; LP (37, d€)) — LP(0,T; LP(27F, d€))
Aq,n[f](ﬂwva):ZU(RW,U), (w,a) S E+'
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As a consequence of Lemmas 2.1 and 2.2, A, . is a linear and bounded operator.

We also consider the following backward-boundary value problem, called the adjoint
problem of (2.7):

Ou*(t,w, z) + w - Vu* (t,w, x) — q(z)u*(t,w,z) = —qK:[u*](t,w, x)
u(T,w,x) =0, (w,x)eSxN (2.8)
u(t,w,o) = f*(t,w,0), (w,o0)eXT,te(0,T),

where f* € L¥ (0,T; Lp/(EJF,dE)), p € [l,+00),

K:[u*](t,w',x):://{(x,w/,w)u*(t,w,m) dw
S

with the corresponding albedo operator A7 .

Al LP(0,T; LY (2%, d€)) — LP' (0,7 LP (7, d€))
‘A:;,fs[f*](tvw?a)::U*(tvw,(f), (W,O') €.

The operators A, , and Aj , satisfy the following property:

Lemma 2.5: Let f € L?(0,T; LP(X7;d€)) and f* € L¥ (0,T; L (S%;d€)), where
p,p € (1,400) are such that 1/p+ 1/p’ = 1. Then, we have

T
/o / (W v(0)f(tw, 0)A; L[]t w, 0) dodwdt =

= —// (w-v(o))f*(t,w,0)Aq x[f](t,w, o) dodwdt.
0 Jo+

Proof: It is a direct consequence of Lemma 2.1. Let u(¢,w, x) the solution of (2.7) with
boundary condition f and u*(¢,w, x) the solution of (2.8) with boundary f*. We obtain
the result by using (2.3), once the equation in (2.7) is multiplied by u* and integrated
over (0,T) x Q. O

As a direct consequence of Lemma 2.5, we have:

Lemma 2.6: Let T > 0, q1,q2 € L>®(Q) and k1, ko satisfying (2.4). Assume that u,
is the solution of (2.7) with coefficients qi1, k1 and satisfying the boundary condition
feLrr (O,T; LP(E_,dE)), p € (1,400) and that u} is the solution of (2.8), with qa, ko
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and boundary condition f* € L¥’ (0,T; LPI(E’L,dé)), 1/p+1/p' = 1. Then we have

//((D(m) —Q1(x))u1(t,w,x)u§(t,w,m) dxdwdt
0JQ
T
—/0/Q(Q2($)Kn2[u1](t,w7x)—q1(:c)K,il[u1](t,w,a:))ug(t,w,:c)d:cdwdt

- /O /;+ (w ' V(U>) [AQ1,/'€1[f] - -AqZ,/-gQ [fH (t,w, O’)f*(t’w, 0-) dadwdt,

3. Highly Oscillatory Solutions

In this section we prove some technical results related to special solutions of (2.7) and
(2.8) that will be useful in the proof of Theorem 1.1. We denote by ¢ the zero extension
of ¢ in the exterior of €.

Proposition 3.1: Let T > 0, q1,q2 € L>®(Q), and k satisfying (2.4). We consider
V1,12 € C(S,C5°(RY)) such that

supp 1 (w, ) NQ = (suppihe(w, ) +Tw)NQ =0, VweS. (3.1)

Then, there exists Cy > 0 such that, for each A\ > 0, there exist Ry ) € C([O,T];Wg)
and R} , € C([0,T]; W) satisfying

IR leo,m:02Q) < Cos  [[R2Mlco,1)02(@) < Co, (3.2)

for which the functions u,,u5 defined by

wr (w0, 2): = 1 (w, @ — tw)e Jo METIIBE—wD) LRy (1 a) (3.3)

t. .
uytw, 2): = o (w, 3 — tw)els PO BemiNimn) L pe (4 ) )

are solutions of (2.7) with ¢ = ¢ and (2.8) with ¢ = ¢y respectively. Moreover, if
k € L>(Q; L3(S x S)), then we have

Jm [ Rsllegoriza@) = lim R slleqorizae) = 0- (3.4)



Proof: Let u be the function
u(t,w,z): =1 (v, —tw)e Jo sy s A=) L Rt w, x). (3.5)
By direct calculations, we easily verify that
u+w-Vu+qu—qKiyu=0:R+w-VR+q@R— ¢ K,[R] — e”‘tqul,)\,
where

Zia(tw,x): = //—@(x, W w)h (W —tw')e” Jo @ a=se) B g (3.6)
S

From (2.6), there exists Ry x € C*([0,7T]; L*(Q)) N C([0,T]; D(A)) a unique solution of

HR+w -VR+qR=qKR]+e™NqZ,,
RO,w,2) =0, (w,x)e€ S xQ, (3.7)
R(t,w,0)=0, (w,0)eX,

and it follows from (3.1) that the function u defined by (3.5) satisfies (2.7) with boundary
condition

Faltyw, 0): = (w, 0 — tw)e o DO B@I—n) (g 0y € 3m,

Multiplying both sides of the equation in (3.7) by the complex conjugate of R, inte-
grating it over () and taking its real part, we get, from Lemma 2.1,

1
/ |R(t)|?dwdx 4 = / w - v(0)|R(t)|*dwdo +/ q1|R(t)|*dwdz —
2dt 2 Js+ o
3?/ 0 K. [R|(t)R(t)dwdz = R [e”‘t/ Q1 Z1 A(t)R(t) dwdz | .
Q

It follows from the Cauchy-Schwarz inequality and (2.5) that
L VEARNIRE) dedo < LR o)

where C1: = max{Mj, Ms}. Therefore, we obtain

d
TIBOIL20) < CollatlllRO 720 + larlloelZiaB) 720,

8



where Cy: = 34 2C4. Since R(0) = 0, we get, by integrating this last inequality on [0, ],

t
IR()]Z2(g) < Ilqll\ooe'ql'wTCQ/O 121 A (P72 () dr

< HQ1Hooqu1HOOT02HZLA”%Q((O,T)XQ)

. Vte0,T].  (3.8)

The first inequality in (3.2) follows easily because |Z; (¢, w,z)| < [[¢1]|oce!9 =T A1y
and, as the same arguments hold for u3 and R; , we also obtain the second inequality.

We assume now x € L (Q; L2(S x S)) For each z € RV, the map w’ + exp(idw’ - )
converges weakly to zero in L(S) when A — +oo and the integral operator with kernel
k(z,-,-) is compact in L?(S). So, we obtain from (3.6),

)\liIil ||Zl7)\(t, -,x)||L2(S) =0 a.e. in [O,T] x Q.

Moreover, |[Z1A(t,-, )| r2@) < C, where C' > 0 is a constant that does not depend on
A. The Lebesgue’s Dominated Convergence Theorem implies that

)\EI_’I}OO ”Zl,)\HLZ([O,T]XQ) = O. (39)
From (3.9) and (3.8) we obtain (3.4), and our proof is complete. O

Corollary 3.2: Under the hypothesis of Proposition 3.1, if q1,q2 € C(Q) and k €
L> (Q; C(S x S)), we have, for every w € S,

Jim [ BACwlleoryzay = m 172 ACw)leqo.rizaw) =0

Proof: By multiplying both sides of the equation in (3.7) by the complex conjugate of
R(t,w, ), integrating it over €, taking its real part and applying the Holder inequality,
we get

d

ZAR(E ) e < lallel Rt
T (@) (©) (3.10)
+ llarlloe (IR LRIt )20y + 12000 @) 3y ) -

Since

RelRl( )] < [ s, Rl 2)|
S

< ([ Itz 0 dw')m ([ st o lin 0P )

1/2
< M?|k||1/2 </|R(t,w’,x)\2dw’) :
S
9
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we obtain
K [R](t, w) |72y < MillEllool[R(E)[|72(0)- (3.11)

From (3.8), (3.10) and (3.11) we have

d
%HR(tv"‘))H%Z(Q) < A|q1[lo [ R(E, @) 17202

+C (120132 0y x@) + 12002y ) -

Now, integrating this last inequality on time, we get

t
IR(t, w)|| 72y < Cellnl=T (tHZL)\H%Z((O,T)XQ) +/0 1Z1 A (T, @) 1720 dT)

< Cellrll=T (T”ZlJ\HQL?((O,T)xQ) + 1 Z1 A (- w, ')H2L2((O,T)><Q)) :

From Proposition 3.1 we know that || Z1 | r2(0,7)x@) — 0 as A — +o00. On the other

W'z converges weakly to zero in L2(S), we have from (3.6), for

hand, as the map w’ — e
almost x € €,

)\lim Zia(t,w,z) =0, YweS, Vtel0,T]
and the conclusion follows from the Lebesgue’s Theorem. O

Lemma 3.3: We assume that ¢ € L*(Q2) and « satisfies (2.4). Let S} be the solution

of .
0S +w-VS —qS=—qK![S]+qe NZ,

S(T,w,z) =0, (w,z)eSxQ, (3.12)
S(t,w,0) =0, (w,0)€xt,
where Z € H*(0,T; L*(Q)) such that Z(T) = 0. Then we have

15Xl qo,m1;22(@)) < Co  and Alij()lo 1S a1 0,1522(Q)) = 0, (3.13)

where Cy is a constant independent of .
Proof: Multiplying both sides of the equation in (3.12) by the complex conjugate of

Sy, integrating it over () and taking its real part, we get

1d
2 dt

* 1 * *
||5A(t)||%z(Q>+5/2_@-V(U))ISA(t,w,U)IdwdaZ — llallos 1S3 072 )

= llalloc I ELISTO N 2@ ISX D £2(@) = lallos|Z ()220 19X (B ] 22
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Since HK:[S](t)HLZ(Q) < maX{Ml, MQ}HS;(\(t)HLZ(Q), we have

d. . .
ISz q) = =CallSKB)22(q) — lalleellZ(B)72(0)-

where Cy:= (3 + 2max{M;, M2})||q||co. Integrating this last inequality on [¢t,T] and
taking into account that S5 (7') = 0, we obtain

T
ISX()1I72(q) < HQHooeCQT/ 1Z(T)122(q) d7 < lalloce I Z] 20,720 (3.14)
t

and the inequality in (3.13) follows easily.

We consider now
T T
wA(t,w,:c)::/ Sx(t,w, z)dr, h(t,w,w)::/ e N Z(1,w, x) dr. (3.15)
t t

Then, it is easy to check that w) satisfies
Ow + w - Vw — gow = —q K [w] + qh,
w(T,w,x) =0, (w,x)€SxQ, (3.16)
w(t,w,o0) =0, (w,0)eXT,
Multiplying both sides of the equation in (3.16) by the complex conjugate of wy,

integrating it over (), taking its real part and applying the Cauchy-Schwarz inequality,
we get as before,

lwa(DI72(q) < lallace®>TNRlI7 2007120 < lalleT?e TN 2172007020y (3:17)
As S} = —Oyw,, it follows from (3.14) and (3.17) that the set {wy} is bounded in
Ct ([O,T]; LQ(Q)) and, in particular, is relatively compact in C([O,T]; LQ(Q)).

On the other hand, by integrating by parts the second integral in (3.15), it is easy to
check that there exists C' > 0 (depending only on T') such that

C
1Al L2(0,7:2(Q)) < WHZHHl(O,T;L?(Q))- (3.18)

Hence, by (3.17), it follows that ||wx|/c(o,7];22(Q)) — 0 as A — oo. Since the partial
derivative in t, 8; : C([0,T]; L*(Q)) — H~*(0,T;L*(Q)), is a continuous operator,
there exists a constant C3 > 0 such that

1S3 -1 (0,722(Q)) = 10wl m-10,1322(0)) < C2llwallc(o,1;L2(q))

and we have the conclusion. O

11



4. Recovery by a Finite Number of Boundary Measurements

In this section we assume that {p1,p2,...,pr} is a given linearly independent set of

functions of C(€2) and we denote X': = span{p1, pa, ..., pr}. For each @ € S we consider
P[p;] the X-ray transform of p; in the direction @, i.e.,

Py pil(x):= / pi(x + tw) dt
and, for each € > 0, Q.: = {z € RN \ Q; dist(z, Q) < e}.
The following Lemma, which the proof is given in [6], will be essential for the proof

of Theorem 1.1:

Lemma 4.1: For all € > 0, there exist w; € S and ¢; € C§°(Q:), j = 1,...,k, such
that the matrix A = (a;;), with entries defined by

Q= /RN Py, [pz](:c)¢§(:c) dz, (4.1)

is invertible.

In order to prove Theorem 1.1, we define, for 0 < r < 1, the function y, : S xS — R
as xr(w,w): = P(rw,w), where P is the Poisson kernel for B(0), i.e.,

1—|z|?

P(z,y): = anlz -y

From the well known properties of P (see [8]), we have

/XT(C&,w) dw=1, Vre (0,1), Vo €S,
° (4.2)
lim [ x (@0, w)Y(w) dw = P(©),

r—1 Jg
where the above limit is taken in the topology of LP(S), p € [1,400) and uniformly on
S if ¢ € C(S). We are now in position to prove our main result.

Proof of Theorem 1.1: Let ¢:= (T — diam(2))/2. We assume that ¢ = ¢ = ¢
and k;(z,w ,w) = ¢;(z)h(w',w), where ¢1,co € X. For @ € S, we define ¢ (w,z) =
Xs(@, w)p(x) and Yo (w, ) = xr (@, w)P(x), where 0 < r,s < 1 and ¢ € C§°(€2.). Then
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11 and 1)y satisfy the condition (3.1) and we may consider the solutions w; and u}
defined by (3.3), i.e.,

up(t,w, x): = xs(w,w)o(xr — tw)e fo q(@=rw)dr iA(t—z-w) + Ry s(t,w, x),
U3t w, @) = X0 (@, ) (@ — tw)edo 1T =N ) | Re (1 0y ),

where A > 0 will be chosen a posteriori. We shall write

q))\(t, w, -T)I = ¢(x — tw)e_ fo q(w_T“’)dTeiA(t—m-w)

Uy(t,w,x):= ¢z — tw)efo q(z=Tw)dT —iX(t—2-w)

in such a way that
(4.3)

Substituting v, and w5 in the indentity given in Lemma 2.6, we have

J(A,r,8) = L(\ 1, 5), (4.4)

where

T
J\ 1, 8):= /0 /Qq(a:) (c1(z) — c2(x)) Kplur] (t, w, 2)us(t, w, x) dedwdt,
L\, 7, s):= /0 /2+ (w-v(0o)) (A1[f>\,s] — Ag[fA’s])fjf’,, dodwdt.

In the above formulas, we are denoting A; = A.,, i = 1,2 and

f)x,s(tuw70->:: XS(&,W)(P)\('L',W,O'), (W,U) € Z_a

(4.5)
frirtw, o) =xr(0,w)¥\(t,w,0), (w,0)€ xT.
In particular, it follows from the definition of the Albedo Operator and (4.3),

Ailfrs) — Aa[fas] = Rias — Raans, on (0,7)x 2T, (4.6)
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By denoting 1(z) = q(z)(¢1(x) — ¢2(2)) and by considering the special form of u; and
ud, we may write J(\,r,s) as J = J; + Jo + J3 + Jy, where

Brsk= | T/Q )| [ h(w’,w)xs(c?,w’)%(t,w’,w)dw’: x

LJS
X Xr (w0, W)Wy (t, w, x) drdwdt,

T ]
Jo(\, s)::// n(x) /h(w',w)xs(&,w’)éx(t,w’,:U)dw' R5 . (t,w, x) dedwdt,
0JQ LJS J

T _
J3(A, 1, 8): = // n(z) /h(w',w)RlA,s(t,w',x)dw'} Xr (0, W)U (t,w, z) drdwdt,
0JQ

S

T
Ja(\, s):://@n(az) /h(w',w)RL)\,S(t,w’,w)dw’] R5 - (t,w, x) dedwdt.
0

L/S

Taking the limit as r — 17 in the above expressions, we get from the definition of
Xry Ji(A, 1y 8) — Ji(A, s), where

I s): = / T/Q (e | / h<w',w>xs<w,w'><m<t,w',x)dw'} WAL, 5, @) dadL,

T
Ja (A, s)::// n(x) /h(w',w)xs(@,w')ék(t,w',m)dw'} Syt w, r) dedwdt,
0JQ LJS

: :
(A, 5): = / / () / h(w’,&)RL,\,s(t,w’,a:)dw’} Uy (4,3, 2) dadt,
0JQ

S

T -
Ju(A, s):z//@n(m) /h(w',w)RlA,s(t,w',m)dw'} Syt w, x) dedwdt
0

L/ S

and 53 , is the unique solution of

0:S+w-VS —qS = —qK [S] +e” 1>‘tqZ2 X
S(T,w,z) =0, (w,z)eSxQ, (4.7)
S(T,w,0)=0, (w,o)eXT,

Moreover, from (4.5) and (4.2), it follows that L(\,r,s) — L(\,s), where

L(\, s) //&m w- v Al[fA s] = Ao[fr6]) (£, 0, 0)UA(t,©, 0) dodt s

// w-v(0) T (Rixs(t,@,0) — Roxs(t,w,0))Ua(t, @, 0)dodt,
o0
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where /Tl [frs] denotes the zero extension of A;[fy s] on 0f2. Therefore, by taking the
limit as r — 1~ in (4.4), we have

J1(A,s) + J2 (N, s) + J3(A, s) + Ja(A, s) = L(A, ).

Now, it is time to take the limit as s — 17. For the first two terms of the right hand
side of the above identity, we get (for i = 1,2) J;(\,s) — J;(A), where

// W@, 3D (1, 5, 2) U (£, 5, 7) dadt

= h(@,) / / n(z)p(x — to) dxdt, (4.9)

// h(w, w)@x(t, w, x)55 \(t,w, r) drdwdt.

On the other hand, the dependence on s in the other terms is given by R; s and
Rs s, which are the solution of (j =1,2)

HR+w-VR+qR = qK,,[R|+e™qZ; s,
RO,w,x) =0, (w,x)€S %, (4.10)
R(t,w,0) =0, (w,0)€xt,

where

Zixs(tw,x) = / kj(z, Ww)xs(@, W )PA(t, W x)dw'. (4.11)
S

It is an immediate consequence of (4.2) and the Lebesgue’s Theorem that, as s — 1,
Zjxs — Zjx in C([0,T]; L*(Q)), where

Ziat,w,z):=kj(r,0,w)Pr(t, w, ). (4.12)

Hence,
lim Rj s =95 in C([0,T); L*Q)),

s—1—

where S; » is the solution of

S +w- VS +qS = qK,,[S] +eMqZ; z,
S0,w,x) =0, (w,x)€S X, (4.13)
S(t,w,0)=0, (w,0)€X,
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and Z; \(t,w,z): = ¢j(z)h(0,w)Px(t,w, z). Therefore, J;(\,s) — J;(N), (i = 3,4) and
L(\,s) — L(\), where

_ /O T/Q n(x) { /S h(w',@)SL,\(t,w’,m)dw'] V(1 &, 7) dudt,

— /T / n(z) { / h(w',@)SLA(t,w',x)dw'] S5 \(t,w, z) dedwdt. (4.14)
//89 G- 1(0)) (S1Alt, B, 0) — Saa(t,©,0))UA(t, T, o) dodt

and we obtain
| JL (N[ < [J2(N)] + [J3(A)] + [Ja(A)] + [L(A)], (4.15)

where
T
1201 < Wil [ ot 1215180, 0)] dedr,
0

[ T3] < [nllsolllloce™ PRS0l 22, TSLA(@);
|[J2)] < lInlloo [ KR [S1 ]l

L] < [|¢]oce™T / / 5 (o) 11 A(L.5,0) — Soa (3, 0)| dodt.

(4.16)

Since ¢ € C§°(€2.), it follows from the choice of ¢ that the function (¢, w, x) — ¢(z—tw)
belongs to HJ (0, T; L?(Q)) (as a constant function on w). Hence, we have

| J2(A)] < ”/)”OOGMT”(bHHé(O,T;LZ(Q))”SS,)\HH*(O,T;LQ(Q))-

On the other hand, from the weak convergence to zero in L? (O,T; LQ(Q)) of 51y, it
follows that

)\111_’1_1 HKh[Sl )\]”L2(0 T;L2(Q)) — 0. (417)

Hence, we have from (4.15)—(4.17) and Lemma 3.3,

// o(x —tw) 2 dadt

Nl + C / / 5 1(0))" [SiA(t. B, 0) — Spa(t,3,0)| dodt,

|[J1(N)| = |h(@,w)|

(4.18)

where C(A\) — 0 as A — +o0.
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Since (supp ¢ + sw) NQ = for all |s| > T, we have

/OT/Q n(z)p(x — tw)? dedt

/RN /O ' n(y + s@)¢(y)* dsdy

/RN /_ Z ply + s)¢(y)” dsdy‘ (4.19)

> [Pl o) dy

and we get

@) [ | 1Palal(n)] o) dy < CO il +
T
02/0 /E)Q(&'V(U))JF\SL)\(L@,U)—Sg)\(t,@,a)\ dodt

We are now in position to conclude the proof. First of all, we consider in the above
inequality the directions wy,...,w; and the functions ¢y, ..., ¢, given by Lemma 4.1,
in such a way that we can write

Coller — e2llo0 < C(N)|ler = calloo +

kT
+C2 3" [ [ (@ v(0)) T 1810(1:5,0) — S2a(6.3:0)] do,
oo Joo

for some constant Cy > 0. If we denote by
wi i (t,w,0) = xs(Wj,w)Pa(t,w,x) + Rixs(t,w,x), i=1,2, j=1,...,k

it follows from (4.2) that, as s — 17, u; ; — u?., where

i,
ufj:5@j®A+Si7)\, i=12, j=1,...,k

and g, is the spherical atomic measure concentrated on w.

It is clear from (4.13) that uﬁj(t,w,a) = u;%j(t,w,a), forc € ¥ and j =1,...,k.

Moreover, uﬁj — u;%j = S1.a — S2.a. Therefore, if uﬁj(t,&?j,a) = uffj(t,fuj,a) on Egj,

for j =1,...,k, it follows that
Coller = ealloc < C(N)le1 — e2oo

and the conclusion follows easily if we choose A > 0 large enough. 0
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